

Introduction:

Microcystins are hepatoxic cyclic heptapeptides that are often produced by freshwater blue-green algae (*Microcystis aeruginosa* and other members of *Planktothrix*, *Anabaena*, *Oscillatoria* and *Nostoc* genera by non-ribosomal peptide synthesis. These toxins can covalently bind and inhibit protein phosphatase 1 and 2A which are important in regulating many critical cellular functions. Microcystins are responsible for the deaths of fish, birds, wild animals, and agricultural livestock in many countries where freshwaters contain toxic cyanobacterial blooms, and adverse effects of the toxins on human health have been recognized.

A tiered notification system that takes different actions based on specific numeric thresholds for Microcystin-LR concentrations in recreational waters has been developed. This guidance allows states to take various actions—such as posting information about harmful algal blooms (HABs), issuing a recreational public health advisory, or temporarily closing recreational waters through a no contact advisory—depending on the severity of the bloom event.

Recommended Actions for Specific Microcystin-LR Concentrations Informational sign postings about HABs at recreational waters: < 6 μg/L Recreational public health advisory: 6 μg/L Elevated recreational public health advisory (e.g., no contact): 20 μg/L

To improve and expand microcystin monitoring, Attogene has developed a rapid, easy to use lateral flow assay (architecture shown in Figure 1) to detect these algal toxins at or above the key $5\mu g/L$ threshold. The assay is based on a competitive inhibition (the higher the concentration of microcystin in the sample, the fainter the test line on the device). As an example of the utility of this rapid test, we implemented the screening of microcystin from pure algae cultures.

Test line

Control line

Figure 1. Architecture of a lateral flow device that includes a backing card with laminated sample pad, conjugate pad, nitrocellulose, and absorbent pad. On the nitrocellulose pad

Results and Discussion:

Attogene leveraged its rapid microcystin lateral flow test (catalog number AU2024C - <u>https://www.attogene.com/shop/microcystin-lateral-flow-kit-for-labs/</u>) to Identify cultures that are producing appreciable levels of microcystins. Our Attogene microcystin lateral flow assay has the key benefit of being field deployable and capable of detecting samples in the field. We also make a laboratory version of this kit which does not include sample collection bottles like the field-based version. In these experiments, we removed 200ul of media directly from tubes containing suspensions of the algae listed in **Table 1**. These cultures were centrifuged, and the supernatant was moved to a new tube. We then added 20ul of running buffer included with our microcystin kit and applied the sample directly into the port of the lateral flow cassette to detect extracellular levels of microcystins.

Table 1: Reader Results

Name	Control	Test	Ratio	Result
	Line	Line		
Oppb Microcystin LR	408358	759404	1.86	
5ppb Microcystin LR	665219	221010	0.33	
10ppb Microcystin LR	911955	167065	0.18	
20ppb Microcystin LR	762449	107272	0.14	
Microcystis aeruginosa UTEX 2386	212229	402511	1.9	Clear Negative
Microcystis aeruginosa UTEX 2385	521117	46393	0.09	> 20ppb
Microcystis UTEX aeruginosa 2063	230626	321265	1.39	0-5ppb
Microcystis aeruginosa UTEX 2061	247383	513119	2.07	Clear Negative
Microcystis flos-aquae UTEX 2673	271612	598352	2.2	Clear Negative
Microcystis aeruginosa UTEX 2665	272204	536171	1.97	Clear Negative
Microcystis aeruginosa UTEX 2664	355138	292848	0.82	5-20ppb
Microcystis aeruginosa UTEX 2388	460496	40978	0.09	> 20ppb
Microcystis aeruginosa UTEX 3037	322704	28721	0.09	> 20ppb
Microcystis aeruginosa UTEX B2670	202282	467633	2.31	Clear Negative
Microcystis aeruginosa UTEX B2663	431271	241764	0.56	5-20ppb
Microcystis aeruginosa UTEX B2676	229101	504363	2.2	Clear Negative
Oscillatoria tenuis UTEX B428	412132	294990	0.72	5-20ppb
Anabaena catenula utex B 375	238980	348847	1.46	0-5ppb
Microcystis aeruginosa B 2662	465041	233601	0.5	5-20ppb
Anabaena spiroides utex B 1552	340337	364980	1.07	0-5ppb
Oscillatoria prolifera B 1270	384372	298063	0.78	5-20ppb
Nostoc muscorum utex 1038	182016	237959	1.31	0-5ppb
Oscillatoria lutea utex B 1814	346805	310665	0.9	5-20ppb
Anabaena cylindrica utex 1611	253309	445867	1.76	Clear Negative
Phormidium autumnale utex 1580	366365	535266	1.46	0-5ppb
Nostoc muscorum utex 2209	320006	392927	1.23	0-5ppb
Nostoc muscorum utex 1832	302039	386426	1.28	0-5ppb
Anabaena raddhawae utex 1823	233194	513027	2.2	Clear Negative
Phormidium luridum var. olivace utex B426	246426	478781	1.94	Clear Negative
Nostoc sp. Utex B2211	368591	478059	1.3	0-5ppb
Plectonema boryanun utex 485	199290	395629	1.99	Clear Negative

ppb = parts per billion = μ g/L

Use of rapid lateral flow test to screen lab strains of cyanobacteria strains for Microcystin expression

Discussion:

This proof of principle study represents an excellent example of how the Attogene rapid lateral flow test can be used and leveraged to rapidly detect microcystin in in a qualitative fashion. It may also be used in a semi-quantitative or quantitative fashion with the use of a reader (Figure 2).

The limit of detectability of this lateral flow test can readily be made less than 5ppb with implementation of a lateral flow reader (e.g., this is how the results shown in Table 1 were generated). However, for rapid reviewing of the results by eye, a cut off value of 5ppb or greater is recommended. Several types of lateral flow readers are on the market and can be used for performing very accurate and quantitative analysis. Images may also be analyzed from photos in image J or similar processing programs.

	Micro	ocystin-LR (Sample 2385		
-	0 2	3.5	5 10	1X 1	:10 1:100
ine ——	E. E.	E			H H
					0
	Sample	Name	Control	Test	Ratio
	Oppb	Standard	427570	758377	1.77
	2ppb	Standard	433258	481339	1.11
	3.5ppb	Standard	692773	500093	0.72
	5ppb	Standard	640760	412207	0.64
	10ppb	Standard	801629	283004	0.35
	2385 1X	Microcystis aeruginosa UTEX 2385	920084	64750	0.07
	2385 1:10	Microcystis aeruginosa UTEX 2385	661701	132165	0.2
	2385 1:100	Microcystis aeruginosa UTEX 2385	688647	378776	0.55

Figure 2. Lateral Flow running buffer spiked with 0, 2, 3.5, 5 or 10ppb microcystin-LR were added into sample ports. Highly positive sample UTEX2385 was added to sample ports at 1X, 10X or 100X. Samples were run for 15 minutes. A picture was taken of the cassettes and results were read in a lateral flow reader.

Interestingly, while analyzing the extracellular levels of microcystin, we also have found that the intercellular levels of microcystins in algae are often several fold higher than that found in the media or in contaminated water samples. Thus, extracting intercellular microcystin can be performed using a probe sonication followed by filtration or centrifugation and direct addition to the sample port if understanding the levels of microcystin within the cells is desired.

Control Li Test Li

Finally, while we did not normalize our results with the number of algae cells in each culture, it is fully possible to keep close track of cell population and directly relate the number of cells with amount of microcystins. Calculations can then be readily done to determine the amount of microcystin being expressed per cell.